
Tutorial :
Byzantine agreement

Valerie King
University of Victoria

Victoria, Canada

25 Byzantine Agreement
in the full information modelByzantine Generals Problem

�We imagine that several divisions of the Byzantine army are
camped outside an enemy city, each division commanded by
its own general. The generals can communicate with one
another only by messenger. After observing the enemy,
they must decide upon a common plan of action.
However, some of the generals may be traitors, trying to
prevent the loyal generals from reaching agreement...�

--Lamport, Shostak and Pease, 1978

Byzantine Agreement

To model worst case faults in networks where
processors communicate via point-to-point links

Byzantine Agreement

To model worst case faults in networks where
processors communicate via point-to-point links
All pairs are connected
Source of message known to recipient

Start with initial bits; exchanges messages, then
output same bit. If all start with the same bit,
must output that bit.

i
A
has
1

i
B
has
0

C has
0 i

Agreement Protocol: Send each other input bit and
vote

i
A
has
1

i
B
has
0

C has
0 i

Byzantine Adversary (BA)

n nodes
t bad nodes
behave
arbitrarily
Worst case
input

Agreement Protocol: Vote and output majority.
Requires t< n/3
Without some signature scheme, A can’t prove what C
sent to B (no “authentication”)

i
A has 1 iB has 0

C has
0

i

C has 1

i

Synchronous model
• Proceeds in rounds: Time=number of rounds
• Round: A) All nodes send messages

B) All nodes receive all messages sent

There is a deterministic algorithm that takes
t+1 rounds and this is the best possible, even in the
authenticated setting.
Works by detecting bad nodes.

The asynchronous model

Adversary schedules message
delivery, no global clock
àAt any step, a node must act

before hearing from all n-t nodes
and t of these nodes which send
may be bad

How do you measure time?

• Initial step when all or some nodes may send
messages, then event-driven:

• each node waits for an event before acting
• Time = length of longest chain of events

where each event depends on the previous
one occurring or equivalently

• Time= # of maximum time units where the
max time to send a message from one node
to another takes 1 time unit

Famous impossibility result
Crash fault: A node dies.
In the worst case,
ONE crash fault makes
(deterministic) agreement
impossible with asynchrony.
(1982: Fischer, Lynch and
Patterson) 2007 Nancy Lynch wins the

Knuth Prize for lifetime
achievement, with this result
called �fundamental in all of
computer science�.

Randomness, time and messages

• Can be used to save time and communication
• In the asynchronous model, it’s necessary

What kind of randomness?

• A random bit “global coin” known to all
OR
• “private coinflips”: Each node has access to

its own random bits which are generated as
needed

Randomness and the power of the
adversary

“adversary” ==worst case faults

Using randomness: coinflips are made during the algorithm
Adversary does NOT know their outcomes until they are

flipped

• Can the adversary wait to see the coinflips before
choosing whom to corrupt?

• Then it is an “adaptive adversary”
• Else it is “static”

Randomness and the power of the
adversary

• Can the adversary wait to see the coinflips before
choosing whom to corrupt?

• Then it is an “adaptive adversary”
• Else it is “static”

With the static version, the algorithm can elect a leader
which decides.

Outline for tutorial

Part I
• Rabin’s global coin alg
• Ben-Or’s with private coins
– Reliable broadcast, multicast

Part II
• Averaging samplers

Global Coin Alg, t <n/8 (synch version
of Rabin)

Repeat
• Each node sends its bit to all
– maj <- majority bit received,
– tally <-number of maj bits received

• If global coin = heads, threshold <- L=5n/8
Else threshold <- H= 6n/8
tally >= threshold then vote <-- maj
Else vote <- 0

• If tally >= D= 7n/8 then Decide maj

Why this works: 2 thresholds

If maj is not unique,
ALL < L so all set to 0
and decide next round

Adversary can only affect number received by t
TALLY

D=7n/8
H=6n/8
L=5n/8

Why this works: 2 thresholds

If maj is not unique,
ALL < L so all set to 0
and decide next round

Adversary can only affect number received by t
TALLY

D=7n/8
H=6n/8
L=5n/8

Why this works: 2 thresholds

ALL> H, all set to maj
ALL decide current round
or next

Adversary can only affect number received by t
TALLY

D=7n/8
H=6n/8
L=5n/8

Why this works: 2 thresholds

ALL> H, all set to maj
ALL decide current round
or next

Adversary can only affect number received by t
TALLY

D=7n/8
H=6n/8
L=5n/8

Why this works: 2 thresholds

Otherwise, all nodes in
two consecutive tiers.
D>All > L: All keep maj if
threshold is L
H > All: All set to 0 if
threshold is H

Adversary can only affect number received by t
CASE: TALLY tiers

D=7n/8
H=6n/8
L=5n/8

Why this works: 2 thresholds

No decision, repeat

Adversary can only affect number received by t
CASE: TALLY tiers

D=7n/8
H=6n/8
L=5n/8

What if the threshold is
NOT the right one?

Asynchronous with private coins

Ben-Or Byzantine Agreement t<n/5
r=1
While not decided each p repeats:

do Broadcast of vote bp

v ß majority value
tally ß size of majority

CASE: tally
A) > (n+t)/2 then Decides on v
B) > t then bp ß v
C) else bp ß private coinflip
Increment r

Broadcast (p)
• Sends (bp, r) to all
• Waits until votes for round r received from n-t
– Can only wait this long or alg may stall

• If > (n+t)/2 of same vote v received, then sends
(echo,v,r) to all
– Ensures >half good nodes had same value so only 1

such v
– Else sends (echo, nil, r) to all

• Waits until n-t (echo,*, r) messages received

Analyzing Ben-Or Byzantine Agreement
t<n/5

While not decided each p repeats:
do Broadcast of vote bp

v ß majority value
tally ß size of majority

CASE: tally
A) > (n+t)/2 then Decides on v
B) > t then bp ß v
C) else bp ß private coinflip

Two thresholds

A Deciding point (all above maintaining
pt)

B Maintaining point (only 1 value possible)

If tally of all nodes above A, they
decide, and because of property of
echoes, they decide on same value

Two thresholds

A Deciding point (all above maintaining
pt)

B Maintaining point (only 1 value possible)

If one node decides--> tally> 2t+1
--> tally > t+1 for all nodes

--> All hold same vote, all decide
next round

Two thresholds

A Deciding point (all above maintaining
pt)

B Maintaining point (only 1 value possible)

If there is no tally above A, then
some nodes may be in CASE C
Decision occurs if coin flips all agree
and they agree with bits held by
nodes in CASE B

Observe 1:
Ben-Or’s iterations can be repeated until private
coins agree with each other and with the
maintained bit.

Ends when 4n/5 good nodes hold the same value

Bracha improves this to 2n/3, and t<n/3 by having
nodes by a verification routine that enures nodes
act consistently (or are detected).

Observe 2:
For t ≤ √n/4 then w/const prob it works the first
time:
Let X be the #heads-#tails when n coins are tossed,
normal distribution with
σ2 = ∑(E[X2

i] - E[Xi]
2) = n(1/2) –n(1/4)=n/4

σ = √n/2=2t
Pr(X > 2t) =
If
#heads - #tails > 2t or. #tails - #heads > 2t
à Adv can’t affect majority value à1/2 prob. of fair
coin

Reliable Broadcast (Bracha)

A node p broadcasts a message m to all other
nodes. If if t<n/3

• If all nodes start with the same bit, all
decide the same bit within 3 steps

• If any good node decides on a bit, all nodes
will decide the same bit.

{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m) from n-t other

nodes,
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving n-t (ready, m), decide m

Bracha’s Reliable Broadcast

{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m) from n-t other

nodes,
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving n-t (ready, m), decide m

CASE: Suppose good nodes start with a 1

{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving n-t (ready, m), decide m

All n-t good nodes
receive and send

{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving n-t (ready, m), decide m

All n-t good nodes
receive and send

All good nodes receive
echoes and send

{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving 2t+1 (ready, m), decide m

All n-t good nodes
receive and send

All good nodes receive
echoes and send

All good nodes receive
ready and decide

{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving 2t +1 (ready, m), decide m

t+1 good nodes send
ready

CASE: Suppose one good node decides m

1. {p a node, m message}
2. p sends (init, m) to all nodes
3. Upon receiving (init, m)
4. Send (echo, m) to all nodes
5. Upon receiving n-t (echo, m) or t+1

(ready,m)
6. Send (ready, m) to all nodes
7. Upon receiving 2t +1 (ready, m), decide m

t+1 good nodes sent
ready

, all good nodes will
send ready, all decide

{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving 2t +1 (ready, m), decide m

Ready messages sent by a good node only if majority of
good nodes agree on echo message, can’t have two
different values

Properties of:
Reliable Broadcast

if t<n/3
• If all nodes start with the same bit, all

decide the same bit within 3 steps
• If any good node decides on a bit, all nodes

will decide the same bit.

Multicast (Ran, Ben-Or)
Each node p inputs a bit. All nodes decide on the
same subset of at least n-t bits
Remaining bits are ambiguous (nil or correct)

P2 P3 … Pn

0 - nil

P1

1
1
0

n-t

Implementing multicast

• Each node uses Reliable Broadcast in parallel to
send
their bit and waits until it decides at least n- t

bits
• Spread: uses Reliable Broadcast to broadcast

the subset of bits decided
• Fill in missing bits which appear in t+1 decided

subsets

P1

Part II

Randomness for choosing representative
committees

U=Set of all nodes
S is !-representative of U,
|U| if
|BAD ∩ S|/|S|<
|BAD ∩ U|/|U| +!

.
A set of mostly representative committees can be
built deterministically:
averaging sampler, extractor, disperser, Bracha committee

|U|=n, 1-1/log n fraction of
committees are
representative, for ANY subset
of BAD nodes

.
G is a (!,") sampler if no more than " fraction of
committees are !-representative, for ANY subset of BAD
nodes (Zuckerman)

.
G is a (!",) sampler if no more than " fraction of
committees are !-representative, for ANY subset of BAD
nodes

Proof: Let d be the size of the committee, r be the
number of committees

If d=O(log (1/")/!2 and r>n/", there is a sampler w.h.p.

.
Probabilistic method

To show there exists a graph with a set of
properties e1, e2, …,ek
• Show that the probability that any of these

properties fail to occur is < 1
by taking a union bound

• Pr(e1)+Pr(e2) +…+Pr(ek) < 1

.
Proving existence of sampler

Fix a set of bad nodes B, fix a set of r!> n non-representative
committees C’

X be the number of edges from r! committees to bad nodes.
X =sum of r! d independent coin flips Xi =1 w/ prob =|B|/n, else 0
E[X]= r! d(|B|/n)

By a Chernoff-Hoeffding bound, for any a>0, n independent coinflips
in (0,1)

Pr(X >E[X])+ a) ≦ exp (-2a2 /n)

Here, n= |C’|*d= r! d, a= # (r! d)
= exp(-2#2 r! d)

Thus, Pr(C’ are all unrepresentative) ≦ exp (- r! d #2/2)

.
Proving existence of a sampler

Now we don’t want this to property to hold
For any Bad set B
For any subset of committees of size > delta

So taking the union bound over all possible such sets,
There are < 2n bad sets

r$
And %

%& < '
$

. possible subsets of committees
Taking the union bound

r$
< (2)n '

$. * exp ((-)2 r$ d/2)
Let d=(4 ln 2) (log (1/$)/)2 recalling r$ > n

=exp(n ln 2 + r$ ln *
$ - r$ (4 ln 2) ln *

$ /2) <0
Therefore there is some G which has no C’

References

• Introduction of the problem and the impossibility result

(Pease, Shostak, Lamport 1980)

• Deterministic synchronous BA with poly(n) messages and

optimal time(Garay and Moses)

• Rabin’s global coin flip alg (from Motwani and Raghavan

“Randomized Algorithms” text)

• Samplers and randomness extraction, defined in

Zuckerman, 1997

Thank you!

Questions?

