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25 Byzantine Agreement
in the full information modelByzantine Generals Problem

�We imagine that several divisions of the Byzantine army are
camped outside  an enemy city, each division commanded by 
its own general. The generals can  communicate with one
another only by messenger. After observing the enemy, 
they must decide upon a  common plan of action.
However, some of the generals may be traitors, trying to
prevent the loyal generals from reaching agreement...�

--Lamport, Shostak and Pease, 1978



Byzantine Agreement

To model worst case faults in networks where 
processors communicate via point-to-point links



Byzantine Agreement

To model worst case faults in networks where 
processors communicate via point-to-point links
All pairs are connected
Source of message known to recipient



Start with initial bits; exchanges messages, then 
output same bit. If all start with the same bit, 
must output that bit.

i
A 
has 
1

i
B 
has 
0

C has 
0 i



Agreement Protocol: Send each other input bit and 
vote

i
A 
has 
1

i
B 
has 
0

C has 
0 i



Byzantine Adversary (BA)

n nodes 
t  bad  nodes 
behave 
arbitrarily
Worst case 
input



Agreement Protocol: Vote and output majority.  
Requires t< n/3
Without some signature scheme, A can’t prove what C 
sent to B (no “authentication”)

i
A has 1 iB has 0

C has 
0

i

C has 1

i



Synchronous model
• Proceeds in rounds: Time=number of rounds
• Round: A) All nodes send messages

B) All nodes receive all messages sent

There is a deterministic algorithm that takes 
t+1 rounds and this is the best possible, even in the 
authenticated setting.
Works by detecting bad nodes.



The asynchronous model

Adversary schedules  message 
delivery, no global clock
àAt any step, a node must act 

before hearing from all n-t nodes 
and t of these nodes which send 
may be bad



How do you measure time?

• Initial step when all or some nodes may send 
messages, then event-driven:

• each node waits for an event before acting
• Time = length of longest chain of events 

where each event depends on the previous 
one occurring or equivalently

• Time= # of maximum time units where the 
max time to send  a message from one node 
to another takes  1 time unit



Famous impossibility result
Crash fault: A node dies.
In the worst case, 
ONE crash fault makes 
(deterministic) agreement 
impossible with asynchrony.
(1982: Fischer, Lynch and 
Patterson) 2007 Nancy Lynch wins the 

Knuth Prize for lifetime 
achievement,  with this result 
called �fundamental in all of 
computer science�.



Randomness, time and messages

• Can be used to save time and communication
• In the asynchronous model, it’s necessary



What kind of randomness?

• A random bit “global coin” known to all
OR
• “private coinflips”: Each node has access to 

its own random bits which are generated as 
needed



Randomness and the power of the 
adversary

“adversary” ==worst case faults

Using randomness:  coinflips are made during the algorithm
Adversary does NOT know their outcomes until they are 

flipped

• Can the adversary wait to see the coinflips before 
choosing whom to corrupt? 

• Then it is an “adaptive adversary”
• Else it is  “static”



Randomness and the power of the 
adversary

• Can the adversary wait to see the coinflips before 
choosing whom to corrupt? 

• Then it is an “adaptive adversary”
• Else it is  “static”

With the static version, the algorithm can elect a leader 
which decides.



Outline for tutorial

Part I 
• Rabin’s global coin alg
• Ben-Or’s with private coins 
– Reliable broadcast, multicast

Part II
• Averaging samplers



Global Coin Alg, t <n/8 (synch version 
of Rabin)

Repeat
• Each node sends its bit to all
– maj <- majority bit received,
– tally <-number of maj bits received

• If global coin = heads,  threshold <- L=5n/8
Else  threshold <- H= 6n/8
tally >= threshold then  vote <-- maj
Else vote <- 0

• If tally >= D= 7n/8  then Decide maj



Why this works: 2 thresholds

If maj is not unique, 
ALL < L so all set to 0 
and decide next round

Adversary can only affect number received by t
TALLY

D=7n/8
H=6n/8
L=5n/8

Why this works: 2 thresholds

If maj is not unique, 
ALL < L so all set to 0 
and decide next round

Adversary can only affect number received by t
TALLY

D=7n/8
H=6n/8
L=5n/8



Why this works: 2 thresholds

ALL> H, all set to maj
ALL decide current round 
or  next

Adversary can only affect number received by t
TALLY

D=7n/8
H=6n/8
L=5n/8

Why this works: 2 thresholds

ALL> H, all set to maj
ALL decide current round 
or  next

Adversary can only affect number received by t
TALLY

D=7n/8
H=6n/8
L=5n/8



Why this works: 2 thresholds

Otherwise, all nodes in 
two consecutive tiers.
D>All > L: All keep maj if 
threshold is L
H > All: All set to 0 if 
threshold is H

Adversary can only affect number received by t
CASE: TALLY tiers

D=7n/8
H=6n/8
L=5n/8



Why this works: 2 thresholds

No decision, repeat

Adversary can only affect number received by t
CASE: TALLY tiers

D=7n/8
H=6n/8
L=5n/8

What if the threshold is 
NOT the right one?



Asynchronous with private coins



Ben-Or Byzantine Agreement t<n/5
r=1
While not decided each p  repeats:

do Broadcast of vote bp

v ß majority value 
tally ß size of majority

CASE:  tally
A)  > (n+t)/2   then Decides on v
B)  > t then bp ß v
C) else    bp ß private coinflip
Increment r



Broadcast (p)
• Sends (bp, r) to all 
• Waits until votes for round r received from n-t
– Can only wait this long or alg may stall

• If > (n+t)/2  of same vote v received, then sends 
(echo,v,r) to all
– Ensures >half good nodes had same value so only 1 

such v 
– Else sends (echo, nil, r) to all

• Waits until n-t (echo,*, r) messages received



Analyzing Ben-Or Byzantine Agreement 
t<n/5

While not decided each p  repeats:
do Broadcast of vote bp

v ß majority value 
tally ß size of majority

CASE:  tally
A)  > (n+t)/2   then Decides on v
B)  > t then bp ß v
C) else    bp ß private coinflip



Two thresholds

A Deciding point (all above maintaining 
pt)

B Maintaining point (only 1 value possible)

If  tally of all nodes  above A, they 
decide, and because of property of 
echoes, they decide on same value



Two thresholds

A Deciding point (all above maintaining 
pt)

B Maintaining point (only 1 value possible)

If one node decides--> tally> 2t+1
--> tally > t+1 for all nodes

-->  All hold same vote, all decide 
next round



Two thresholds

A Deciding point (all above maintaining 
pt)

B Maintaining point (only 1 value possible)

If there is no tally above A, then 
some nodes may be in CASE C
Decision occurs if coin flips all agree 
and they agree with bits held by 
nodes in CASE B



Observe 1: 
Ben-Or’s iterations can be repeated until private 
coins agree with each other and with the 
maintained bit.

Ends when 4n/5 good nodes hold the same value

Bracha improves this to 2n/3, and t<n/3 by having 
nodes by a  verification routine that enures nodes 
act consistently (or are detected).



Observe 2: 
For t ≤ √n/4 then w/const prob it works the first 
time:
Let X be the #heads-#tails when n coins are tossed, 
normal distribution with 
σ2 = ∑(E[X2

i] - E[Xi]
2 ) =  n(1/2) –n(1/4)=n/4 

σ = √n/2=2t
Pr(X  > 2t) =
If 
#heads - #tails > 2t or. #tails - #heads > 2t 
à Adv can’t affect majority value à1/2 prob. of fair 
coin



Reliable Broadcast (Bracha)

A node p broadcasts a message m to all other 
nodes. If if t<n/3

• If all nodes start with the same bit, all 
decide the same bit within 3 steps

• If any good node decides on a bit, all nodes 
will  decide the same bit.



{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m) from n-t other 

nodes,
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1 

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving n-t (ready, m), decide m

Bracha’s Reliable Broadcast



{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m) from n-t other 

nodes,
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1 

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving n-t (ready, m), decide m

CASE: Suppose  good nodes start with a 1



{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1 

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving n-t (ready, m), decide m

All n-t good nodes 
receive and send



{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1 

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving n-t (ready, m), decide m

All n-t good nodes 
receive and send

All good nodes receive 
echoes and send



{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1 

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving 2t+1 (ready, m), decide m

All n-t good nodes 
receive and send

All good nodes receive 
echoes and send

All good nodes receive 
ready and decide



{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1 

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving 2t +1 (ready, m), decide m

t+1 good nodes send 
ready

CASE: Suppose one good node decides m



1. {p a node, m message}
2. p sends (init, m) to all nodes
3. Upon receiving (init, m)
4. Send (echo, m) to all nodes
5. Upon receiving n-t (echo, m) or t+1 

(ready,m)
6. Send (ready, m) to all nodes
7. Upon receiving 2t +1 (ready, m), decide m

t+1 good nodes sent 
ready

, all good nodes will 
send ready, all decide



{p a node, m message}
1. p sends (init, m) to all nodes
2. Upon receiving (init, m)
3. Send (echo, m) to all nodes
4. Upon receiving (n+t)/2 (echo, m) or t+1 

(ready,m)
5. Send (ready, m) to all nodes
6. Upon receiving 2t +1 (ready, m), decide m

Ready messages sent by a good node only if majority of 
good nodes agree on echo message, can’t have two 
different values



Properties of:
Reliable Broadcast

if t<n/3
• If all nodes start with the same bit, all 

decide the same bit within 3 steps
• If any good node decides on a bit, all nodes 

will  decide the same bit.



Multicast (Ran, Ben-Or)
Each node p inputs a bit. All nodes decide on the 
same subset of at least n-t bits 
Remaining bits are ambiguous (nil or correct)

P2 P3 … Pn

0 - nil

P1

1
1
0

n-t



Implementing multicast

• Each node uses Reliable Broadcast in parallel to 
send
their bit and waits until it decides at least n- t 

bits
• Spread: uses Reliable Broadcast to broadcast 

the subset of bits decided
• Fill in missing bits which appear in t+1  decided 

subsets

P1



Part II



Randomness for choosing representative 
committees

U=Set of all nodes
S is !-representative of U, 
|U| if
|BAD ∩ S|/|S|<
|BAD ∩ U|/|U|  +!



.
A set of mostly representative committees can be 
built deterministically: 
averaging sampler, extractor, disperser, Bracha committee

|U|=n, 1-1/log n fraction of 
committees are 
representative, for ANY subset 
of BAD nodes



.
G is a (!,") sampler if no more than " fraction of 
committees are !-representative, for ANY subset of BAD 
nodes (Zuckerman)



.
G is a (!",) sampler if no more than " fraction of 
committees are !-representative, for ANY subset of BAD 
nodes

Proof: Let d be the size of the committee, r be the 
number of committees

If d=O(log (1/")/!2 and r>n/", there is a sampler w.h.p.



.
Probabilistic method

To show there exists a graph with a set of 
properties e1, e2, …,ek
• Show that the probability that any of these 

properties  fail to occur  is < 1
by taking a union bound

• Pr(e1)+Pr(e2) +…+Pr(ek) < 1



.
Proving existence of sampler

Fix a set of  bad nodes B, fix a set of r!> n non-representative
committees C’

X be the  number of edges from r! committees to bad nodes. 
X =sum of r! d independent coin flips Xi =1 w/ prob =|B|/n, else 0
E[X]= r! d(|B|/n)

By a Chernoff-Hoeffding bound, for any a>0, n  independent coinflips 
in (0,1)

Pr(X >E[X])+ a ) ≦ exp (-2a2 /n)

Here, n= |C’|*d= r! d,    a= # (r! d)
= exp(-2#2 r! d)

Thus, Pr( C’ are all unrepresentative) ≦ exp (- r! d #2/2)



.
Proving existence of a sampler

Now we don’t want this to property to hold 
For any Bad set B
For any subset of committees of size > delta

So taking the union bound over all possible such sets,
There are < 2n bad sets

r$
And %

%& < '
$

. possible subsets of committees
Taking the union bound

r$
< (2)n '

$ .   * exp ((- )2 r$ d/2)
Let  d=(4 ln 2) (log (1/$)/ )2 recalling r$ > n

=exp( n ln 2 + r$ ln *
$ - r$ (4 ln 2) ln *

$ /2) <0 
Therefore  there is some G which has no C’
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Thank you!

Questions?


